Cockayne syndrome group B protein has novel strand annealing and exchange activities
نویسندگان
چکیده
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, severe neurological abnormalities and prageroid symptoms. The CS complementation group B (CSB) protein is involved in UV-induced transcription coupled repair (TCR), base excision repair and general transcription. CSB also has a DNA-dependent ATPase activity that may play a role in remodeling chromatin in vivo. This study reports the novel finding that CSB catalyzes the annealing of complementary single-stranded DNA (ssDNA) molecules with high efficiency, and has strand exchange activity. The rate of CSB-catalyzed annealing of complementary ssDNA is 25-fold faster than the rate of spontaneous ssDNA annealing under identical in vitro conditions and the reaction occurs with a high specificity in the presence of excess non-homologous ssDNA. The specificity and intrinsic nature of the reaction is also confirmed by the observation that it is stimulated by dephosphorylation of CSB, which occurs after UV-induced DNA damage, and is inhibited in the presence of ATPgammaS. Potential roles of CSB in cooperation with strand annealing and exchange activities for TCR and homologous recombination are discussed.
منابع مشابه
Single strand annealing and ATP-independent strand exchange activities of yeast and human DNA2: possible role in Okazaki fragment maturation.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchan...
متن کاملCockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.
Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs...
متن کاملRad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture.
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA str...
متن کاملCooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress.
Cockayne syndrome (CS) is a rare genetic disorder characterized as a segmental premature-aging syndrome. The CS group B (CSB) protein has previously been implicated in transcription-coupled repair, transcriptional elongation, and restoration of RNA synthesis after DNA damage. Recently, evidence for a role of CSB in base excision repair of oxidative DNA lesions has accumulated. In our search to ...
متن کاملStrand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2
Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006